Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum.

نویسندگان

  • Delyana Vasileva
  • Holger Janssen
  • Daniel Hönicke
  • Armin Ehrenreich
  • Hubert Bahl
چکیده

Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism

An operon comprising two genes, CA_P0037 and CA_P0036, that encode proteins of unknown function that were previously shown to be highly expressed in acidogenic cells and repressed in solventogenic and alcohologenic cells is located on the pSOL1 megaplasmid of Clostridium acetobutylicum upstream of adhE2 A CA_P0037::int (189/190s) mutant in which an intron was inserted at position 189/190 in the...

متن کامل

Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum.

The transcription factor AraR controls utilization of L-arabinose in Bacillus subtilis. In this study, we combined a comparative genomic reconstruction of AraR regulons in nine Clostridium species with detailed experimental characterization of AraR-mediated regulation in Clostridium acetobutylicum. Based on the reconstructed AraR regulons, a novel ribulokinase, AraK, present in all analyzed Clo...

متن کامل

Computational Identification of Small RNAs in Clostridium acetobutylicum and Prediction of mRNA Targets

Small non-coding bacterial RNAs (sRNAs) have been found in genomes of many model organisms. Many studies show that sRNAs play important regulatory roles in a variety of cellular processes in bacteria. Clostridium acetobutylicum is a gram-positive, rodshaped anaerobe that produces acetone, butanol and ethanol through fermentation of a variety of carbon sources. It regained interest for potential...

متن کامل

Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough.

Previous experiments examining the transcriptional profile of the anaerobe Desulfovibrio vulgaris demonstrated up-regulation of the Fur regulon in response to various environmental stressors. To test the involvement of Fur in the growth response and transcriptional regulation of D. vulgaris, a targeted mutagenesis procedure was used for deleting the fur gene. Growth of the resulting Deltafur mu...

متن کامل

Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor.

A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871-885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 158 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2012